Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes

Articolo
Data di Pubblicazione:
2015
Abstract:
Cancer is a genetic disease, but two patients rarely have identical genotypes. Similarly, patients differ in their clinicopathological parameters, but how genotypic and phenotypic heterogeneity are interconnected is not well understood. Here we build statistical models to disentangle the effect of 12 recurrently mutated genes and 4 cytogenetic alterations on gene expression, diagnostic clinical variables and outcome in 124 patients with myelodysplastic syndromes. Overall, one or more genetic lesions correlate with expression levels of ~20% of all genes, explaining 20-65% of observed expression variability. Differential expression patterns vary between mutations and reflect the underlying biology, such as aberrant polycomb repression for ASXL1 and EZH2 mutations or perturbed gene dosage for copy-number changes. In predicting survival, genomic, transcriptomic and diagnostic clinical variables all have utility, with the largest contribution from the transcriptome. Similar observations are made on the TCGA acute myeloid leukaemia cohort, confirming the general trends reported here.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
Myeloid neoplasm, Myelodysplastic syndromes, Gene mutation, Gene expression profiling, Prognosis
Elenco autori:
Gerstung, M; Pellagatti, A; Malcovati, Luca; Giagounidis, A; DELLA PORTA, MATTEO GIOVANNI; Jädersten, M; Dolatshad, H; Verma, A; Cross, Nc; Vyas, P; Killick, S; Hellström Lindberg, E; Cazzola, Mario; Papaemmanuil, E; Campbell, Pj; Boultwood, J.
Autori di Ateneo:
DELLA PORTA MATTEO GIOVANNI
MALCOVATI LUCA
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1152442
Pubblicato in:
NATURE COMMUNICATIONS
Journal
  • Dati Generali

Dati Generali

URL

http://www.nature.com/articles/ncomms6901
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0