Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

Fully automated grey and white matter spinal cord segmentation

Articolo
Data di Pubblicazione:
2016
Abstract:
Axonal loss in the spinal cord is one of the main contributing factors to irreversible clinical disability in multiple sclerosis (MS). In vivo axonal loss can be assessed indirectly by estimating a reduction in the cervical cross-sectional area (CSA) of the spinal cord over time, which is indicative of spinal cord atrophy, and such a measure may be obtained by means of image segmentation using magnetic resonance imaging (MRI). In this work, we propose a new fully automated spinal cord segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: The Optimized PatchMatch Label fusion (OPAL) algorithm for localising and approximately segmenting the spinal cord, and the Similarity and Truth Estimation for Propagated Segmentations (STEPS) algorithm for segmenting white and grey matter simultaneously. In a retrospective analysis of MRI data, the proposed method facilitated CSA measurements with accuracy equivalent to the inter-rater variability, with a Dice score (DSC) of 0.967 at C2/C3 level. The segmentation performance for grey matter at
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
MULTIPLE-SCLEROSIS; OPTIMIZED PATCHMATCH; LABEL FUSION; ATROPHY; DISABILITY; MRI; MULTISCALE; ACCURATE; TIME
Elenco autori:
Prados, Ferran; Cardoso, M. Jorge; Yiannakas, Marios C.; Hoy, Luke R.; Tebaldi, Elisa; Kearney, Hugh; Liechti, Martina D.; Miller, David H.; Ciccarelli, Olga; Wheeler Kingshott, Claudia A. M. G.; Ourselin, Sebastien
Autori di Ateneo:
GANDINI CLAUDIA
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1182849
Pubblicato in:
SCIENTIFIC REPORTS
Journal
  • Dati Generali

Dati Generali

URL

www.nature.com/srep/index.html
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0