Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

Acceleration of brain cancer detection algorithms during surgery procedures using GPUs

Articolo
Data di Pubblicazione:
2018
Abstract:
The HypErspectraL Imaging Cancer Detection (HELICoiD) European project aims at developing a methodology for tumor tissue classification through hyperspectral imaging (HSI) techniques. This paper describes the development of a parallel implementation of the Support Vector Machines (SVMs) algorithm employed for the classification of hyperspectral (HS) images of in vivo human brain tissue. SVM has demonstrated high accuracy in the supervised classification of biological tissues, and especially in the classification of human brain tumor. In this work, both the training and the classification stages of the SVMs were accelerated using Graphics Processing Units (GPUs). The acceleration of the training stage allows incorporating new samples during the surgical procedures to create new mathematical models of the classifier. Results show that the developed system is capable to perform efficient training and real-time compliant classification.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
Brain cancer detection; European projects in digital systems design; GPU; SVMs; Software; Hardware and Architecture; Computer Networks and Communications; Artificial Intelligence
Elenco autori:
Torti, E.; Fontanella, A.; Florimbi, G.; Leporati, F.; Fabelo, H.; Ortega, S.; Callico, G. M.
Autori di Ateneo:
LEPORATI FRANCESCO
TORTI EMANUELE
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1223006
Pubblicato in:
MICROPROCESSORS AND MICROSYSTEMS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0