Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Persone

Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images

Articolo
Data di Pubblicazione:
2018
Abstract:
The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to help medical doctors in the diagnostics or surgical guidance tasks. However, the processing of HSI data involves high computational requirements due to the large amounts of information captured by the sensor. The main goal of this study is to optimize and parallelize the k-nearest neighbors (KNN) filtering algorithm exploiting the GPU technology to obtain real-time processing during surgical procedures of brain cancer. This parallel version performs a filtering of a classification map (obtained from a supervised classifier), evaluating the classes of the pixels simultaneously. The adopted optimizations and the computational capabilities of the GPU device allow to obtain a speedup up to 66.18x compared to the serial implementation.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
K-nearest neighbors filtering; hyperspectral imaging instrumentation; brain cancer 30 detection; image processing; graphics processing units.
Elenco autori:
Florimbi, Giordana; Fabelo, Himar; Torti, Emanuele; Lazcano, Raquel; Madroñal, Daniel; Ortega, Samuel; Salvador, Ruben; Leporati, Francesco; Danese, Giovanni; Báez-Quevedo, Abelardo; MARRERO CALLICO', GUSTAVO IVAN; Juarez Asensio, Eduardo; Sanz, César; Sarmiento, Roberto
Autori di Ateneo:
DANESE GIOVANNI
LEPORATI FRANCESCO
TORTI EMANUELE
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1223008
Link al Full Text:
https://iris.unipv.it//retrieve/handle/11571/1223008/501623/Sensors_KNN_not_the_last_version.pdf
Pubblicato in:
SENSORS
Journal
  • Dati Generali

Dati Generali

URL

https://www.mdpi.com/1424-8220/18/7/2314
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0