Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Persone

Role of synthetic parameters on the structural and optical properties of n,sn-copromoted nanostructured tio2: A combined ti k-edge and sn l2,3-edges x-ray absorption investigation

Articolo
Data di Pubblicazione:
2020
Abstract:
Sn-modification of TiO2 photocatalysts has been recently proposed as a suitable strategy to improve pollutant degradation as well as hydrogen production. In particular, visible light activity could be promoted by doping with Sn2+ species, which are, however, thermally unstable. Co-promotion with N and Sn has been shown to lead to synergistic effects in terms of visible light activity, but the underlying mechanism has, so far, been poorly understood due to the system complexity. Here, the structural, optical, and electronic properties of N,Sn-copromoted, nanostructured TiO2 from sol-gel synthesis were investigated: the Sn/Ti molar content was varied in the 0–20% range and different post-treatments (calcination and low temperature hydrothermal treatment) were adopted in order to promote the sample crystallinity. Depending on the adopted post-treatment, the optical properties present notable differences, which supports a combined role of Sn dopants and N-induced defects in visible light absorption. X-ray absorption spectroscopy at the Ti K-edge and Sn L2,3-edges shed light onto the electronic properties and structure of both Ti and Sn species, evidencing a marked difference at the Sn L2,3-edges between the samples with 20% and 5% Sn/Ti ratio, showing, in the latter case, the presence of tin in a partially reduced state.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
Photocatalysis; TiO; 2; nanoparticles; X-ray absorption spectroscopy
Elenco autori:
Fracchia, M.; Ghigna, P.; Minguzzi, A.; Vertova, A.; Turco, F.; Cerrato, G.; Meroni, D.
Autori di Ateneo:
FRACCHIA MARTINA ILARIA
GHIGNA PAOLO
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1342605
Pubblicato in:
NANOMATERIALS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0