Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

Dengue Vector Population Forecasting Using Multisource Earth Observation Products and Recurrent Neural Networks

Articolo
Data di Pubblicazione:
2021
Abstract:
This article introduces a technique for using recurrent neural networks to forecast Ae. aegyptimosquito (Dengue transmission vector) counts at neighborhood-level, using Earth Observation data inputs as proxies to environmental variables. The model is validated using in situdata in two Brazilian cities, and compared with state-of-the-art multioutput random forest and k-nearest neighbor models. The approach exploits a clustering step performed before the model definition, which simplifies the task by aggregating mosquito count sequences with similar temporal patterns.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
Aedes aegypti; Deep learning; dengue risk; remote sensing; satellite images
Elenco autori:
Mudele, O.; Frery, A.; Zanandrez, L.; Eiras, A.; Gamba, P.
Autori di Ateneo:
GAMBA PAOLO ETTORE
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1439697
Pubblicato in:
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.3.0