Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

Attention-based Skin Cancer Classification Through Hyperspectral Imaging

Contributo in Atti di convegno
Data di Pubblicazione:
2022
Abstract:
In recent years, hyperspectral imaging has been employed in several medical applications, targeting automatic diagnosis of different diseases. These images showed good performance in identifying different types of cancers. Among the methods used for classification, machine learning and deep learning techniques emerged as the most suitable algorithms to handle these data. In this paper, we propose a novel hyperspectral image classification architecture exploiting Vision Transformers. We validated the method on a real hyperspectral dataset containing 76 skin cancer images. Obtained results clearly highlight that the Vision Transforms are a suitable architecture for this task. Measured results outperform the state-of-the-art both in terms of false negative rates and of processing times. Finally, the attention mechanism is evaluated for the first time on medical hyperspectral images.
Tipologia CRIS:
4.1 Contributo in Atti di convegno
Keywords:
Vision Transformers, medical hyperspectral imaging, skin cancer, deep learning
Elenco autori:
LA SALVIA, Marco; Torti, Emanuele; Gazzoni, Marco; Marenzi, Elisa; Leon, Raquel; Ortega, Samuel; Fabelo, Himar; MARRERO CALLICO', GUSTAVO IVAN; Leporati, Francesco
Autori di Ateneo:
LEPORATI FRANCESCO
MARENZI ELISA
TORTI EMANUELE
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1461884
Titolo del libro:
Proceedings of the 2022 25th Euromicro Conference on Digital System Design (DSD)
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0