Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

CNN-Based Surrogate Models of the Electrostatic Field for a MEMS Motor: A Bi-Objective Optimal Shape Design

Articolo
Data di Pubblicazione:
2022
Abstract:
The use of a convolutional neural network to develop a surrogate model of the electric field in MEMS devices is proposed. An electrostatic micromotor is considered as the case study. In particular, different CNNs are trained for the prediction of the torque profile and the maximum torque value at a no-load condition and the radial force which could arise in case of the radial displacement of the rotor during motion. The proposed deep learning approach is able to predict the abovementioned quantities with a low error and, in particular, it allows for a decrease in the computational cost, especially in case of optimization problems based on FE models.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
convolutional neural network; electrostatic micromotor; surrogate models
Elenco autori:
Di Barba, P.; Mognaschi, M. E.; Wiak, S.
Autori di Ateneo:
DI BARBA PAOLO
MOGNASCHI MARIA EVELINA
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1477310
Pubblicato in:
ELECTRONICS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.1.0