Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

Early detection of variants of concern via funnel plots of regional reproduction numbers

Articolo
Data di Pubblicazione:
2023
Abstract:
Early detection of the emergence of a new variant of concern (VoC) is essential to develop strategies that contain epidemic outbreaks. For example, knowing in which region a VoC starts spreading enables prompt actions to circumscribe the geographical area where the new variant can spread, by containing it locally. This paper presents ‘funnel plots’ as a statistical process control method that, unlike tools whose purpose is to identify rises of the reproduction number (Rt), detects when a regional Rt departs from the national average and thus represents an anomaly. The name of the method refers to the funnel-like shape of the scatter plot that the data take on. Control limits with prescribed false alarm rate are derived from the observation that regional Rt's are normally distributed with variance inversely proportional to the number of infectious cases. The method is validated on public COVID-19 data demonstrating its efficacy in the early detection of SARS-CoV-2 variants in India, South Africa, England, and Italy, as well as of a malfunctioning episode of the diagnostic infrastructure in England, during which the Immensa lab in Wolverhampton gave 43,000 incorrect negative tests relative to South West and West Midlands territories.
Tipologia CRIS:
1.1 Articolo in rivista
Elenco autori:
Milanesi, S.; Rosset, F.; Colaneri, M.; Giordano, G.; Pesenti, K.; Blanchini, F.; Bolzern, P.; Colaneri, P.; Sacchi, P.; De Nicolao, G.; Bruno, R.
Autori di Ateneo:
BRUNO RAFFAELE
DE NICOLAO GIUSEPPE
Milanesi Simone
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1477853
Pubblicato in:
SCIENTIFIC REPORTS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0