Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

A Novel Hybrid Boundary Element - Physics Informed Neural Network Method for Numerical Solutions in Electromagnetics

Articolo
Data di Pubblicazione:
2024
Abstract:
In this contribution the authors propose a hybrid Boundary Element Method - Physics Informed Neural Networks (BEM - PINN) approach, to be used for the resolution of partial differential equations arising when formulating boundary-value problems in electromagnetism. The approach retains both the advantages of integral methods (compact representation and no need to mesh large domains) and differential methods, where the term "differential"refers here to the Automatic Differentiation carried out during the training phase of the PINN. The method is easy to implement and adds an additional flexibility to purely PINN based solution methods.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
Boundary element method; Laplace equation; physics informed neural networks
Elenco autori:
Barmada, S.; Dodge, S.; Tucci, M.; Formisano, A.; Di Barba, P.; Mognaschi, M. E.
Autori di Ateneo:
DI BARBA PAOLO
MOGNASCHI MARIA EVELINA
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1515077
Pubblicato in:
IEEE ACCESS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.1.0