Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

HS2RGB: an Encoder Approach to Transform Hyper-Spectral Images to Enriched RGB Images

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Abstract:
Hyperspectral imaging (HSI) captures detailed spectral information across numerous wavelengths, providing superior object characterization to conventional RGB imaging. Despite these advantages, training deep learning models on HSI data is challenging due to the limited availability of extensive datasets, unlike the more familiar RGB images. To address this issue, we propose an encoder model that transforms hyperspectral images into enriched RGB images. These new enriched images represent a graphical depiction of HSI and become a new dataset to use as input for well-known models pre-trained on RGB images. In this work, we introduce HS2RGB, an encoder model based on the Vision Transformer (ViT) architecture, which condenses hyperspectral data into a three-element vector interpreted as RGB channels. The results demonstrate the effectiveness of the new images generated by the encoder, showing better visual differentiation of features compared to traditional RGB images. Morover, results highlighted greater consistency in latent vectors of the same type of tissue across different samples compared to images generated with feature selection and transformation techniques like PCA and t-SNE. Finally, we tested the enriched RGB images using Meta's SAM model for instance segmentation, revealing that our model's images provided more precise identification of regions of interest, such as tumours in medical images.
Tipologia CRIS:
4.1 Contributo in Atti di convegno
Keywords:
Artificial Intelligence; Deep Learning; Encoder; Hyperspectral Image; RGB; Vision Transformer
Elenco autori:
Gazzoni, M.; Torti, E.; Marenzi, E.; Danese, G.; Leporati, F.
Autori di Ateneo:
DANESE GIOVANNI
GAZZONI MARCO
LEPORATI FRANCESCO
MARENZI ELISA
TORTI EMANUELE
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1517356
Titolo del libro:
Proceedings - 2024 27th Euromicro Conference on Digital System Design, DSD 2024
Pubblicato in:
PROCEEDINGS EUROMICRO CONFERENCE ON DIGITAL SYTEM DESIGN
Series
  • Dati Generali

Dati Generali

URL

https://ieeexplore.ieee.org/document/10741711
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0