Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Insegnamenti

Segmentation of Intraoperative Glioblastoma Hyperspectral Images Using Self-Supervised U-Net++

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Abstract:
Brain tumour resection yields many challenges for neurosurgeons and even though histopathological analysis can help to complete tumour elimination, it is not feasible due to the extent of time and tissue demand for margin inspection. This paper presents a novel attention-based self-supervised methodology to improve current research on medical hyperspectral imaging as a tool for computer-aided diagnosis. We designed a novel architecture comprising the U-Net++ and the attention mechanism on the spectral domain, trained in a self-supervised framework to exploit contrastive learning capabilities and overcome dataset size problems arising in medical scenarios. We operated fifteen hyperspectral images from the publicly available HELICoiD dataset. Enhanced by extensive data augmentation, transfer-learning and self-supervision, we measured accuracy, specificity and recall values above 90% in the automatic end-to-end segmentation of intraoperative glioblastoma hyperspectral images. We evaluated our outcomes with the ground truths produced by the HELICoiD project, obtaining results that are comparable concerning the gold-standard procedure.
Tipologia CRIS:
4.1 Contributo in Atti di convegno
Keywords:
Brain Cancer, Computer-Aided Diagnosis, Deep Learning, Disease Diagnosis, Hyperspectral Imaging, Self-Supervised Learning
Elenco autori:
Gazzoni, Marco; La Salvia, Marco; Torti, Emanuele; Marenzi, Elisa; Leon, Raquel; Ortega, Samuel; Martinez, Beatriz; Fabelo, Himar; Callicò, Gustavo; Leporati, Francesco
Autori di Ateneo:
GAZZONI MARCO
LEPORATI FRANCESCO
MARENZI ELISA
TORTI EMANUELE
Link alla scheda completa:
https://iris.unipv.it/handle/11571/1520655
Titolo del libro:
Proceedings of VISAPP 2025, ISBN: 978-989-758-728-3
  • Dati Generali

Dati Generali

URL

https://www.scitepress.org/
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0