Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Pubblicazioni

A neural network clustering algorithm for the ATLAS silicon pixel detector

Articolo
Data di Pubblicazione:
2014
Abstract:
A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using MonteCarlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
ATLAS; silicon pixel detector; clustering algorithm
Elenco autori:
Atlas, Coll; Conta, Claudio; Franchino, Silvia; Fraternali, Marco; Livan, Michele; Negri, Andrea; Rebuzzi, DANIELA MARCELLA; Rimoldi, Adele; Aad, G.
Autori di Ateneo:
NEGRI ANDREA
REBUZZI DANIELA MARCELLA
Link alla scheda completa:
https://iris.unipv.it/handle/11571/907234
Pubblicato in:
JOURNAL OF INSTRUMENTATION
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.3.0