Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Insegnamenti

509494 - BRAIN MODELLING

insegnamento
ID:
509494
Durata (ore):
52
CFU:
6
SSD:
FISIOLOGIA
Anno:
2024
  • Dati Generali
  • Syllabus
  • Corsi
  • Persone

Dati Generali

Periodo di attività

Primo Semestre (30/09/2024 - 20/01/2025)

Syllabus

Obiettivi Formativi

The course aims at offering knowledge in the field of computational neuroscience. Specifically, the focus will be on modeling multiscale biological neural networks and understanding the brain and its function, through a variety of theoretical constructs and computer science analogies. The multiscale and multidisciplinary approach is the key of challenging international projects, as Human Brain Project and EBRAINS. In view of applications, these neural models represent powerful tools to understand the complex operations underlying perception, actions and memory, in both physiological and pathological states.


- Basic knowledge of the neurobiological principles underlying the brain functioning
- Mathematical models to represent the information coding in the brain and the elements of the circuits
- Informatic methods and tools to reconstruct, simulate and validate the brain circuit models.
- Applications of such models in understanding the complex operations underlying behaviors.

Prerequisiti

A basic knowledge in “programming” and “mathematics” is required

Metodi didattici

The course will be made up of lectures, integrated with seminars, hands-on informatic laboratories with computational tools.

Verifica Apprendimento

The examination foresees written and oral parts

Testi

Reference books:
• Dayan, P. & Abbott, L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems.
• Churchland, P.S. & Sejnowski T.J. The Computational Brain (Computational Neuroscience Series).
More details will be indicated during the course.

Contenuti

• AI inspired by brain science, how AI and neuroscience drive each other forwards
• Computational Neuroscience: approaches and applications
• Neural Encoding and Decoding
• Neuron and synapse modelling at different levels of detail
• Connectivity
• Network dynamics
• Plasticity and learning
• Structure-function in brain circuit models, neural correlates of behaviors
• Integration and embodiment

Corsi

Corsi

ARTIFICIAL INTELLIGENCE 
Laurea
3 anni
No Results Found

Persone

Persone (2)

CASELLATO CLAUDIA
Gruppo 09/IBIO-01 - BIOINGEGNERIA
AREA MIN. 09 - Ingegneria industriale e dell'informazione
Settore IBIO-01/A - Bioingegneria
Professore associato
DAGLIATI ARIANNA
Gruppo 09/IBIO-01 - BIOINGEGNERIA
AREA MIN. 09 - Ingegneria industriale e dell'informazione
Settore IBIO-01/A - Bioingegneria
Ricercatore
No Results Found
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.5.0