Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Insegnamenti

511277 - LABORATORY OF MACHINE LEARNING FOR PHYSICS AND ASTRONOMY

insegnamento
ID:
511277
Durata (ore):
36
CFU:
3
SSD:
Indefinito/Interdisciplinare
Anno:
2024
  • Dati Generali
  • Syllabus
  • Corsi
  • Persone

Dati Generali

Periodo di attività

Secondo Semestre (03/03/2025 - 13/06/2025)

Syllabus

Obiettivi Formativi

- Describe physical systems using the appropriate mathematical formulation.
- Apply machine-learning algorithms to the resulting problem.
- Understand the advantages and limitations of machine learning algorithms given the specific problem at hand.

Prerequisiti

Introduction to physics as provided in the relevant first- and second-year classes. Basic knowledge of the Python programming language.

Metodi didattici

Each class will pair traditional lectures (to introduce the relevant problems) with hands-on exercises and demonstrations (to tackle the relevant problem). These computational activities are the key content of the course.

Verifica Apprendimento

Students will develop a series of computational projects. These will be started during the lectures and completed asynchronously. The project report and associate codes, likely in the form of a Jupyter notebook, will then be submitted for evaluation.

Testi

- Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas, and Alexander Gray. Princeton University Press

Contenuti

- Probability theory. Bayes theorem. Descriptive statistics.
- Bayesian vs frequentist statistics. From the pdf to the samples: inverse transform, acceptance/rejection.
- Density estimation. From the samples to the pdf: histograms, Kernel Density Estimation.
- Monte Carlo integrations. Markow chains.
- Metropolis Hastings. MCMC diagnostics. Modern samplers.
- Bayesian model selection. Savage-Dickey density ratio.
- Computing the evidence. Nested sampling. Modern samples.
- Project.

Lingua Insegnamento

INGLESE

Altre informazioni

Lectures will take place at Milano-Bicocca.

Corsi

Corsi

ARTIFICIAL INTELLIGENCE 
Laurea
3 anni
No Results Found

Persone

Persone

GEROSA DAVIDE
Docente
No Results Found
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0