Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Insegnamenti

500316 - GEOMETRIA 1

insegnamento
ID:
500316
Durata (ore):
84
CFU:
9
SSD:
GEOMETRIA
Anno:
2025
  • Dati Generali
  • Syllabus
  • Corsi
  • Persone

Dati Generali

Periodo di attività

Primo Semestre (25/09/2025 - 14/01/2026)

Syllabus

Obiettivi Formativi

Il corso si propone di introdurre gli studenti alle nozioni di base della topologia generale e della geometria affine e proiettiva. Gli obiettivi di apprendimento del corso sono che gli studenti capiscano le strutture e le proprietà di base della topologia generale (aperti, chiusi, intorni, continuità, assiomi di numerabilità e di separazione, topologia di sottospazio, topologia prodotto, topologia quoziente, connessione, compattezza, successioni e compattezza in spazi metrici) e della geometria affine, euclidea e proiettiva di base e sappiano svolgere esercizi di verifica di tali concetti e proprietà su esempi concreti.

Prerequisiti

Un corso di Analisi 1 e un corso di Algebra lineare

Metodi didattici

Lezioni frontali, esercitazioni e tutorato.

Verifica Apprendimento

L'esame consta di una parte scritta e una orale. Lo scritto si divide in due momenti,
il primo consiste nello svolgere esercizi. Per essere ammessi alla prova orale è necessario aver ottenuto un punteggio di almeno 15/30 in tale prova.
La seconda parte dello scritto (molto breve) si svolgerà prima dell'orale. Non si possono consultare libri o appunti o altro materiale durante lo scritto teorico. L'orale parte di regola dalla discussione dell’elaborato scritto, seguito da domande di teoria e/o da semplici esercizi. Gli orali sono pubblici e si svolgono di norma nelle due settimane successive allo scritto.

Testi

Per la geometria:
- E. Sernesi, Geometria 1, seconda edizione, Bollati Boringhieri, Torino 2000,
- E. Fortuna, R. Frigerio, R. Pardini, Geometria Proiettiva, Esercizi e richiami di teoria, Springer Milano, 2011

Per la topologia:
E. Sernesi, Geometria 2, seconda edizione, Bollati Boringhieri, 2000
- M. Manetti, Topologia, seconda edizione, Springer, Milano 2014.
- C. Kosniowski, Introduzione alla topologia algebrica, Zanichelli, Bologna 1988
- L. Steen and J. A. Seebach, Counterexamples in Topology (1970, 2nd ed. 1978) (la bibbia dei controesempi topolgici, con esempi di spazi con le più bizzarre topologie possibili)
- J. Munkres, Topology, 2nd edition, Pearson (in inglese)

Contenuti

Geometria affine, euclidea e proiettiva:
Spazi affini e affinità. Sottospazi affini e giacitura. 
Teorema di Talete, Pappo e Desargues.
Proprietà affini. Formula di Grassmann.
Geometria affine in dimensione 2 e 3.
Geometria euclidea. Isometrie. Proprietà euclidee (congruenza).
Proiezioni. Teorema di Cartan-Dieudonné.
Introduzione alla geometria proiettiva. Motivazioni storiche.
Spazio proiettivo associato a uno spazio vettoriale (su un campo qualunque, ma con particolare riferimento al campo reale); 
sottospazi proiettivi; formula di Grassmann; coordinate omogenee.
Coordinate affini nello spazio proiettivo.
Teorema di Pappo proiettivo.
Proiezione da un punto. 
Cenni sulla dualità. Autodualità di Pappo.Teorema di Desargues.
Proiettività; proprietà proiettive.
Curve algebriche affini e proiettive.
Coniche; classificazioni proiettiva e affine.
Cenni alle quadriche.

Topologia generale.
Spazi metrici e continuità. Mertriche equivalenti. Proprietà degli aperti.
Spazi topologici; aperti, chiusi, intorni e nozioni collegate.
Lo spazio topologico associato ad uno spazi metrico: topologia metrizzabile.
Basi di uno spazio topologico. Lemma della base. 
Sistema fondamentale di intorni. 
Assiomi di numerabilità.
Successioni a valori in uno spazio topologico.
Classificazione dei punti (parte interna, chiusura, frontiera di un sottoinsieme)
Funzioni continue tra spazi topologici.
Assiomi di separazione: spazi di Hausdorff o T2; spazi T0, T1, T3 e T4.
Topologia di sottospazio. Immersioni.
Prodotto di spazi topologici. Base canonica.
Topologia quoziente. Quoziente di uno spazio topologico modulo una relazione di equivalenza.
Spazi regolari, normali e loro proprietà.
Lemma di Urysohn e teorema di metrizzabilità di Uryshon. 
Spazi compatti; compattezza e applicazioni continue. Teorema di Tychonoff.
Caratterizzazione della compattezza per gli spazi metrici. Compattezza per successioni.
Successioni di Cauchy. Completezza; estensione del teorema di Heine-Borel.
Cenni al completamento di uno spazio metrico. Cenni alla costruzione dei reali come completamento dei razionali.
Spazi connessi; connessione e applicazioni continue. Connessione per archi. Componenti connesse e componenti connesse per archi.

Lingua Insegnamento

ITALIANO

Altre informazioni

Più informazioni si trovano sul sito della docente: https://mate.unipv.it/pirola/

Corsi

Corsi

MATEMATICA 
Laurea
3 anni
No Results Found

Persone

Persone (2)

Bricalli Davide
Docente
PIROLA GIAN PIETRO
Settore MATH-02/B - Geometria
Gruppo 01/MATH-02 - ALGEBRA E GEOMETRIA
AREA MIN. 01 - Scienze matematiche e informatiche
Professore Ordinario
No Results Found
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.8.0.1