Skip to Main Content (Press Enter)

Logo UNIPV
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture

UNIFIND
Logo UNIPV

|

UNIFIND

unipv.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  1. Persone

509493 - STATISTICAL MODELLING

insegnamento
ID:
509493
Durata (ore):
56
CFU:
6
SSD:
STATISTICA
Anno:
2024
  • Dati Generali
  • Syllabus
  • Corsi
  • Persone

Dati Generali

Periodo di attività

Primo Semestre (30/09/2024 - 20/01/2025)

Syllabus

Obiettivi Formativi

Definition, estimation, and interpretation of a regression model (Gaussian linear model, Poisson regression, logistic regression). Inference on the model's parameters, model checking, and fit to the data.

Prerequisiti

Introduction to real analysis: functions, derivatives.
Introduction to matrix algebra: vector/matrix operations.
Probability: probability, independence; random variables (definition, distribution function, moments. The Gaussian, Poisson, and binomial distributions).
Statistics: data representation, descriptive statistics, summary statistics.
Inference: point estimation, hypothesis testing, confidence intervals, likelihood-based inference.

Metodi didattici

Lectures and exercises

Verifica Apprendimento

Written exam (exercises)

Testi

Fox, J., 2015. Applied regression analysis and generalized linear models. Sage Publications.
Abraham and Ledolter, Introduction to Regression Modeling, Duxbury Press, 2006

Contenuti

Introduction to regression models, types of regression models (number of variables, parametric/nonparametric).

Linear model via OLS: assumptions, estimation, interpretation.
Descriptive properties of OLS regression line; inferential properties of the estimators.

Simple Gaussian linear model:
- Assumptions, estimation via likelihood. Exact distribution of the ML estimators.
- Inference for the simple Gaussian linear models: inference about the regression coefficients, inference about the mean (prediction), F test.
- Decomposition of the total sum of squares, coefficient of determination R^2.
- Diagnostics and model checking: analysis of the residuals.

Multiple Gaussian linear model:
- Specification, interpretation of the parameters, estimation. Properties of the estimators.
- Geometric interpretation.
- The Gauss-Markov theorem.
- Inference in the multiple linear model: test about an individual coefficient (t-test); test about the significance of the overall model; test about a subset of the regression parameters.
- Model comparison and the R^2 coefficient.
- Notable examples: ANOVA and ANCOVA

Generalized linear models:
- Poisson regression: assumptions, interpretation, estimation, inference.
- Logistic and probit regression: assumptions, interpretation, estimation, inference.

Lingua Insegnamento

INGLESE

Corsi

Corsi

ARTIFICIAL INTELLIGENCE 
Laurea
3 anni
No Results Found

Persone

Persone (2)

D'ANGELO LAURA
Docente
DANESE LUCA
Docente
No Results Found
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0